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.SECTION I. INTRODUCTION

This final report on Task F of Contract NAS6-2307 must be regarded 
as

a report of progress to date in the problem of analysis 
and interpretation

of the waveform-related data from the S-193 radar altimeter experiment.

The waveform analyses are not complete and a continuing series of 
different

"cut and try" calculations must be done; the procedures which are presented

in this report provide the basic building blocks for this continuing 
search.

In very brief summary of the results, two major problem areas exist:

1.) determining the sample-and-hold (S&H) dc offsets, and also 
the parameters

for a theoretical radar mean return waveform from a set of averaged S&H

data as input, and 2.) performing a time-realignment of individual sets of

S&H results prior to averaging in order to correct for the altimeter tracker

time-jitter. For the first problem area, a general-purpose chi-squared

minimizing computer program, X2MIN, has been used- to best-fit the non-time-

realigned S&H averages, and the results are encouraging - a set of S&H offsets

is found and some consistency is observed between these offsets seen in

various "good" data passes. Time-realignment and averaging, the second prob-

lem area, is not in such good shape; we have thus far been unable to 
produce

any improvement in our knowledge of the waveform by use of time-realignment

before averaging, and therefore we have no confidence that any need exists

for applying this cumbersome procedure to waveform data. These two areas,

line-fitting and time-realignment, will be more thoroughly defined and dis-

cussed in the subsequent sections of this report.

For the waveform experiments the altimeter's tracker must be operating

("locked") when S&H data are acquired. This eliminates from any further con-

sideration here the dual-pulse mode, Mode 3, and the Nadir Align Mode. 
Table 1

summarizes the (nominal) pulsewidths, IF bandwidths, S&H positions and spacing,

and the number of frames of data for the remaining altimeter modes and submodes

for which the altitude tracker is locked.

Virtually all our effort for this report has been spent on Mode 5,

submode 2, the "brute force" short pulse (a nominal 20 ns pulse) experiment

which was intended as a direct comparison submode for Mode 5's pulse compres-

sion submode, SM. Since M5,SM1 was apparently operating incorrectly until



Pointing. IF Pulse S&a Sub- SaH of Data

Mode Submode Angle Bandwidth Width Spacing submode Start Frames(totals)

1 0 0.0 10 M4Hz 100 no 25 no 0 0 no 15

(narrow-band, 1 200 na 15
on-nadir) on-nadir)2 400 no 15 (45)

1 0.0 100 M1Hz 100 ns 25 ns 0 0 ns 19

0 (wide-band. 1 200 na 20
on-nadir) '
on-nadir) 2 400 no 20 (59)

2 .4310 100 Mz 1.00 no 25 ns 0 0 ns 19

(wide-band, 1 200 ns 20
off-nadir) 2 400 ns 20 (59)

2 0 0. 10 MHz 100 ns 25 nso 0 0 ns 2

1 200 ns 2

2 400ns 2(6)

[ . . tracker is disabled in submodes 2 through 5 . . . ]

J 6 0. 10 MHz 100 nos 25 nos 0 0 ns 2

1 200 no 2

2 .400 ns 2 (6)

5 0 0. . 10 Hz 100 ns 25 ns 0 0 na 6

(long pulse) 1 200 ns 5

2 400 ns 5 (16)

z0oo
1 0. 100 MHz 130 no 10 ns 0 240 nsa 64

(compressed pulse) P.c. 1 280 ns 15

O 2 360 no 5

3 440 no 15 (99)

2 0.0 100 MHz 20 ns 10 no 0 240 ns 16

(short pulse) 1 280 ns 15

2 360 ns 5

3 440 nos 15 (51)

Table 1. Summary of Data Acquisition Submodes For Which
Altitude Tracker Is locked.
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late in mission SL-3, only M5,SM2 remain as a source of short-pulse ocean-

scattering information. The longer-pulse submodes (100 ns nominal) are im-

portant for determination of the ocean's radar backscattering cross-section,

Ao, whose effects are more pronounced in the trailing edge of the mean 
return

waveform; apart from noting that the waveform fitting procedures described

later in this report may also be used for refining the antenna pointing angle

estimates which are necessary for oo calculations, we will not deal further

here with o. If any changes in rms ocean surface roughness are detectable

in the S-193 altimeter data, these changes should manifest themselves in

the leading edge of the short-pulse mean return waveform. Moreover, the

tracker jitter should leave no measurable effect on the leading edge of 
the

100 ns mean return waveform while estimates made prior to Skylab launch 
indi-

cated that the tracker jitter would have an appreciable effect (increasing

the apparent risetime and also increasing the variance) on the leading edge

of the 10 ns short pulse mean return waveform. (Note the distinction here

between the nominal 10 ns design goal and the nominal 20 ns actually realized

pulses; the tracker jitter corrections - the time-realignment procedures -

Figure 1 sketches the overall waveform processing carried out by a

series of labelled boxes; this is the diagram appropriate to an automatic

waveform program which does not yet exist. Because of the number of dif-

ferent difficulties with the S-193 output data and of the only mixed successes

in our work with the best of this data, such an overall program not only

doesn't now exist but never will.

For instance, Box A of Figure 1 refers to editing of data, but because

of the number of missing modes or submodes, of tracker loss-of-lock, and

of other data drop-outs, it has not been possible to even begin to define an

automatic data editing set of criteria. Instead the editing has been a manual

operation; in fact only those submodes having no apparent loss-of-lock or

data dropouts over an entire submode have been used in our work to date,

deferring until later the questions of what to do about cases in which part

of a submode should be edited out.

The waveform time-realignment procedure includes the functions of boxes

E,F, and G of Figure 1 to produce the necessary tracker jitter time-correction,
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From S-193
~~Radar Altimeter--

104/Frame Sets Radar Altimeter 8/Fr am e

of 8 S&H Results Altitudes

Edit Portions of Data for
Which Altimeter is Unlocked or Tracker

Jitter or Noise is Excessive A

Perform Raw (Non- Form 1/Frame Altitude

Time-Realigned) S&H Averages Averages and Variance Estimates E
Over Entire Submodes B1B

Use X2 IN Fitting Routine with Form Altitude "Trend Line"

Sub mode S&H Averages to. by Low-Order Polynomial

Estimate 8 Individual S&H Fit Over Submode F

Offsets for Submode j
C

_, .Form 8/Frame Estimates

DC Offsets Subtracted of Instantaneous Tracker

from the 104/Frame Errors, Then Use Spline Fit

S&H Sets to Produce 104/Frame Individual
S&H Set Tracker Time-Errors G

Time-Realign Individual S&H Use X2MIN for Determining

Sets ("Vertical Addition) H Parameters in Final Fittedia Theoretical Waveform K

Average the Time-Realigned Do Histogramming at Selected

S&H Data Over Suitable Positions on Waveform, to Produce

Time Span Probability Density Function
Tep Estimates at those Positions L

Figure 1. Idealized Overall Waveform Processing Procedure
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then boxes H and J use these corrections to obtain the final time-realigned

average waveform. At present, these two steps (that is, D&E&F and then G&J)

are performed separately instead of within a single program. Box K is an

entirely straightforward application of the line fitting program to the final

time-realigned average waveform sample but has not been implemented because

of difficulties to be discussed in the section on time-realignment. The

programming for box L of Figure 1 has been completed and is sketched later

in this report; at the time of this report's preparation the histogramming

had not yet been done on nudal altimeter waveform data.

The two following sections of this report describe first the line-

fitting process, then thin'time realignment process. The computer programs

developed or modified for these tasks are described briefly in the appropri-

ate sections but the bulk of the computer program documentation is relegated

to Appendix sections at the end of this report - source decks for all of these

programs have been separately provided to Wallops Flight Center as these

procedures have develope. .. through the contract period. In some cases (notably

the time-realignment main programs)further program modifications have been

made after the programs have been installed at the Wallops computer; thus

the programs now at Wallops vary somewhat from those in the Appendix sections

of this report.
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SECTION II. DETERMINATION OF S&H OFFSETS AND LINESHAPE PARAMETERS

The overall waveform processing diagram, Figure 1 of Section I, shows

two different uses for the line fitting procedure to be described in this

section; first, the submode S&H averages are used to find the individual

S&H de offsets, and later the final time-realigned averages are to be used

to find the final set of descriptive parameters to characterize the waveform.

The same general-purpose chi-squared-minimizing computer program, X2MIN, is

used for both of these purposes. The program X2MIN is described in some

detail in Appendix A, and Appendix B provides the function subroutine FX

which is used with X2MIN to fit S-193 S&H data to the theoretical mean re-

turn waveform described later in this section.

First we will describe the S&H offset problem in general, and point

out the lack of a good means to determine the needed S&H offsets from any

of the calibration modes. Then after describing in general the method to

be used, we will discuss the particular functional form which represents

the theoretical mean return waveform. Following the pages on waveform fit-

ting to the 4-parameter function plus S&H offsets, we present examples oi

waveforms and offsets determined in this way. Finally a means of examining

the statistics at one or several points on the mean waveform is described.

Because the video output in the S-193 radar altimeter is ac-coupled to

the S&H gates, the average of a set of readings from a S&H gate which is

sampling a noise-only region of the mean waveform (i.e., a point prior to

the leading edge of the waveform) should be zero. Because the S&H gates are

less than ideal however, the average is non-zero in practice for a S&H gate

with a noise-only input. Each S&H gate will differ from others, with the

result that each S&H gate will have its own non-zero average output for

noise-only input. Furthermore, the offset for each S&H gate may be dif-

ferent for changes in any of the following: IF bandwidth, receiver tempera-

ture, and S&H gate width. It is important to note that the dc-offset for

each gate must be subtracted from all values obtained by that particular gate

before any time-realignment and waveform averaging can be done. [As we will

see in the section on time-realignment, any particular specified point, or

"bin", on the mean return waveform receives contributions from not one but

several different S&H gates as they are carried past the point of interest
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by the tracker jitter.]

In this work, we assume that the offset characterizing each 
of the

8 S&R gates is a simple additive effect and that once the offset is deter-

mined, all the S&H data may be corrected by simply subtracting the appropri-

ate offset from each S&H data point. This necessary assumption could very

well be incorrect; for example, the offsets might depend somewhat upon the

level of the signal in, or might exhibit some sort of hysteresis-like effects,

or could have other, more complicated behavior. Any case but that of the

simple additive offset becomes virtually impossible to analyze 
from the

limited amount of data available.

To determine the S&H offsets under the simple additive assumption, we

should look at the output for a S&H array position in which all eight gates

are sampling noise. Immediately we are in trouble for submode 1 and 2 of

Mode 5,as there is no subsubmode satisfying this noise-only requirement.

The next possibility would be to use the calibration data step (CDS)

data. Mode 5, submode 3 provide the CDS data for the short pulse mode, Mode 5,

suumuode 2, and Figure 2 shows the resu g- y ... - ....

Pass 9. The solid line in the curve is a Gaussian which is best-fitted to

the CDS data points. Here again, there is no subsubmode in the CDS data

in which all eight S&H gates are in a non-signal region. Another diffi-

culty with all the CDS data in our experience is that it is much 
less vari-

able, much more reproducible pass-to-pass than is any of the actual 
data

acquisition step (DAS) data in submode 2 of Mode 5. Figure 2 does, however,

suggest an approach which might be used if we were to use CDS data to deter-

mine offsets; we could take the offsets as being the differences between the

actual data points and a best-fitted theoretical curve. Figure 3 shows

the CDS data of Figure 2 after subtracting the offsets determined in this

manner, together with a new fitted Gaussian. The fit is somewhat

better in Figure 3 than in Figure 2 .

This reasoning can be extended to DAS data as well. All our expecta-

tions are that the plateau region of the mean return waveform should be a

smoothly varying function; consequently variations of S&H data about a smoothly

varying fitted function might be attributable to S&H offset. The functional

form to be fitted is based on earlier work at Applied Science Associates, and
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O = S2MO
rn = S21

300.-

solid line = fitted curve,

for A = 334.34mv
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Figure 2. Results from SL-2, Pass 9, Mode 5, Submode 3

With Fitted Gaussian



2---O S = sMO
i3 = S293-S 2Ml

Solid line = fitted curve,

300.- for A 333 Omv

t = 73.33ns
o

- 6.33ns

01 +2.9my

02 = +8.5my

03 =0.mv

04 0. my

05  +0.8my

06 = +14.3mv

07 = +0.9my

200. 08 = +2.0my

O8

0
.

r4
r-4

0

100.-

1 Time, nanoseconds

0. O O 100. 200.

. Figure 3. Results from SL-2, Pass 9, Mode 5, Submode 3
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will be described in the next paragraphs, but there remains the question of

where to derive the offsets. Should we take simply subsubmode 3, the set

of S&H positions starting latest in time on the MS, SM2 waveform? Or use

some weighted combination of offsets derived from several subsubmodes? The

answer to which we have evolved is that the eight S&H offsets should be

treated as free parameters to be varied together with the four lineshape-

related parameters (A, to, 0, and E in the following paragraphs) for a 12-

parameter fit to the 32 data points from the 4 subsubmodes of MS, SM2. This

might seem to overlook the entire subject of time-realignment, since we are

simply averaging all S&H data over the entire submode but since the primary

effect of tracker jitter on the observed mean waveform should be to increase

the leading edge risetime (a in the 12-parameter fit), this should not be

a problem in offset determination.

The 32 waveform averages y and their corresponding times t. are as-
3 3

signed an index j=1,32 according to the following rules: j=l,2,...,8 is

assigned to the result from S&H gate 1,2,...,8 in sub-submode 0; j=9,10,...,16

in assigned to the sub-submode 1 result from S&H gate 1,2,...,8; and this

sequential numbering is continued for sub-submodes 2 and 3. Thus arranged,

data point j,(j=1,32), will have come from S&H gate k,(k=1,8), where the re-

lationship between j and k is k=1 + j(mod 8). The theoretical waveform will

be a function of four parameters (A,to,3,$) to be described in the following

paragraph, and of the eight S&H offsets 0k,(k=l,
8).

The four-parameter waveshape function of time t, f(t), is derived from

an earlier report [L. S. Miller and G. S. Brown, "Engineering Studies Re-

lated to the GEOS-C Radar Altimeter, Final Report for Task D, "NASA Contract

NAS6-2307, Applied Science Associates, Inc., Apex, N. C., May 1974, pg. 70],

and is given by
t- t 2

f(t) - AP( 0 ) exp [--(t - to)cosJ2JI] (- to sinl2EI)
Y 00Y 0

for t > to , and by t- t
f(t) = AP( o)

for t < t . In these expressions P(z) is the probability function, which

is related to the error function erf(z) by



P(z) 1/2[1l + erf( ) ]

and I (z) is the Bessel function of the second kind, order zero. The other
'0

symbols have the following meaning:

t = time, in ns

A = a general amplitude factor,

t - a reference time origin in nanoseconds
0

= antenna angle off-nadir,

y = antenna beamwidth-related constant

- .00055 (ns)-1/2 for the S-193 radar altimeter(for

SL-2 and SL-3; the beamwidth apparently changed during SL-4),

-3 -1/2
- 1.656x10 (ns) for S-193

B M a pulsewidth-risetime parameter

The parameter B is the product of two parameters a p and a of the earlier

report, where
s2

a (_)2 4
"C(T

P

4181=, " PW
P

PW = the 3dB pulsewidth of the S-193 altimeter,

c = the speed of light

and a = rms ocean surface roughness.s

Thus for a flat sea, S will be equal to a = 7.66 ns (for a 18 ns pulsewidthp
as in submode 2 of Mode 5), and an increase in sea surface rms roughness will

increase B.

The jth data point, for the data arranged by submode in the manner al-

ready described, is (y ,t ) where we let yj be the averaged waveform sample.

The theoretical function to be fitted will be

fo(t ) = f(t ) + Ok

Here the subscript o denotes "observed", f(t ) is the four-parameter function



of A,to,B given above, and Ok is the offset of S&H date k with k and j

related as before. We use a chi-squared minimizing computer routine X2MIN to

best-fit f0 to the (yj,xj). This computer subroutine is described in

Appendix A ; X2MIN requires a function subroutine FX which evaluates the

function f at each of the input times t.. FX also evaluates the derivatives
o 3

of f with respect to each of the fitting parameters; these derivatives are
0

evaluated at each of the 32 input times t..23

We therefore need the derivatives of f with respect to A,t,,, and
0 0

to 0k , k = 1,8 at each point t.. To handle the offsets,first we use theJ

relationship between k and j to write

df (t.) = 1 , if k = 1 + j(mod 8)

dQk
0 otherwise

Then since fo(t ) and f(t ) are related by a simple additive constant (0k),

df (t.) = df(t.)
dp dp-

where p is any one of the parameters A,to,I,(. Doing the differentiation,

and summarizing here,

t -t

fo (t) = AP( ) + Ok , t. < to

t .t 2

AP- )exp[S- (t to)cos 2 1] I (-- t -t sinI2EJ) + 0, t.>t
OY 3 Y 0 k 3 0

t -t
d (t ) = P( ) - t <tdA 

J

St.-t o  -2

22
=.P(- -- )exp[-(t -t )CosJ2j]I.... 0 t > t0

-(t 
- t 

j

df (t) =- exp[- (t 2 t < tto
dt 0 2 8
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2 t -t
- A exp[ - cos o-2.(t -t)] P(- o) [6cos2 o

2

do -(t -t )

d° t = r2 -2 e xp 12] t < t > t

= _S2
-A(t.-t )(t. - t 2

df (t 8 j 02~ .x 2ay 222 t J, < to

2 28

AP( 0 e- 'tt exp [7 (tj -to)os2]sgn() {2cosl2EIl -)

+ 6/t j 0 sinl2EI 0o (...)} tj > to

In the above, sgn(E) is the sign function,

ag()=+l , >
sgn() =-1 t < 0

t t26. A-- .1 .-t ep [ ( t)o|( sn(( 2s n 2l) in1

0 1 YoJO

+n Io(. ) in II(. .) e h sa argmet •

the above expressions.

The function subroutine FX is written for the 12 parameters to be stored

in an array A(I) with the order of parameter assignment as follows:

A(1) + A, amplitude,
A(2) + t , time origin,

A(3) 8o rise time
A(4) E ( , antenna off-nadir angle,
A(5) + 01 , offset of S&H #1

A(6) 0 offset of S&H #2
S .2

A(12) 08  offset of S&H #8
A(12) + 08 , offset of S&H #8
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Appendix B provides a source listing for FX: a flow diagram is also

provided to simplify program debugging or modification. Source listings

are also provided for subroutines BESI to calculate I (.) and II(.), and
01

for NDTR to calculate P(.). FX includes the option of subtraction of the

individual gate offset from the input waveform data after finding those

offsets. This option is enabled by INFLAG(4) = 1, and assumes the use of

the REPEAT and the continuation flag on C (refer to Appendix A), and it is

assumed that the following data deck organization will be employed.

1 Comment card
Input 1 Size card - NP=32,NX=1,NA=4,NC=2,default CHILIM and MAXITR

DecInput 1 Data Labels - 'TIME', 'WAVEFORM', 'SIGMA'
Deck 32 Data Point cards - (32 input data points)

1 4 VariableParam. cards(A)-initial neighborhood guesses for A(I),I=1,4

,2 Const. param(C) - 6,y

I Comment

2nd 1 Size card - NP=32,NX=1,NA=12,NC=2, default CHILIM and MAXITR

1 Data Label Card - REPE in columns 1-4
±nput 12 Variable Param (A) - continue Flags n A( 1),...,A(4),zero asDeck /.1 %L k";

Deck first guess for A(5),...,A(12)

2 Const. Param.(C) - contunue flags

1 Comment
3 1 Size card-NP=32,NX=l,NA=4,NC=10, default CHILIM and MAXITR

3rd 1 Data Label - REPE in columns 1-4
Input 4 Variable Param.(A) - continue flags
Deck 10 Const. Param. (C) - continue flags on all zeros

With this organization of the data deck for any one set of input averaged

waveform points, there will be three successive sets of problem output and

these will provide the following:

Prints out the results of the
4-parameter functional fit

Output (A,to ,) under the assumption
#1

of zero offsets. Also prints out input
data values of fitted function and the deviations for each input

L data point.



Prints out 12-parameter fit results,
treating the 8 S&H offsets as parameters

Output to be determined. Also prints out

# 2 input data, fitted function, and deviations.

Prints out 4-parameter fit after the 8

offsets determined above have been subtracted

Output from the 32 input data. The 8 offsets
utput are printed out as C(3),C(4),...,C(10).

Also prints out the offset-corrected input

data, fitted function, and deviations. Use

of the line-printer-plotting feature is also useful

in this 3rd output to provide a

quick-look check of the results.

The entire subject of best-fitting experimental data to an expected

functional form is very complicated and often one uses least-squares or

related procedures not because they are optimum but because they are readily

available. Our own use of the function-fitting routine X21IN(as just described)

is in this spirit; if the first results of this approach were encouraging, we

intended later work to verify its suitability.

The initial results of applying the linefitting offset estimation tech-

nique appeared very promising. Figure 4 presents the results for SL-2,

Pass 9, Mode 5, Submode 2, and it is readily seen that the 12-parameter fit

is better than the 4-parameter fit assuming zero offsets. Another example

is provided by Figure 5 showing the results for SL-3,Pass 7/18, Mode 5,

Submode 2. Another case analyzed was SL-2, Pass 6, MS, SM2, and results from

these three passes just mentioned are entered in the first three lines of

Table . This table also indicates the averages of the offsets determined

from these three passes and we were gratified that the pattern of the offsets

was very similar in these cases. These three cases happened to be among the

earliest ones we used, and the approach seemed very promising.

However, there were difficulties soon encountered. Specifically, the

case of SL-3, Pass 28/39 stopped our apparent progress on the offset-and-

linefitting approaches. There was high interest in this particular pass as

it appeared to be the first pass in the Skylab missions in which the pulse

compression submode seemed to be operating and the obvious question was how

the pulse compression, SM1, and the short pulse, SM2, submodes of Mode 5 compared.
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is 12-Parameter Fit After Subtracting Offsets.
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01 0i 03  0 5  . 0 08

(Pass)MLssLom Moda(a) ON # frames 73 74 5 86 -v Avg.

(SL-2) 6 5 2 45 +10.68 +3.87 -3.88 -0.08 -2.25 +3.79 +8.25 40.11 +2.56
+8.12 +1.31 -6.44 -2.64 -4.81 +1.23 +5.69 -2.45

(SL-2) 9 5 2 43 +7.12 +3.39 -3.27 -1.43 -2.45 44.28 +8.40 +2.18 +2.28
+4.84 +1.11 -5.55 -3.71 -4.73 +2.00 +6.12 -0.10

(SL-3)7/18 5 2 47 +5.30 +1.51 -6.96 -2.84 -3.58 +1.15 +3.89 -0.40 -0.24

+5.54 +1.75 -6.72 -2.60 -3.34 +1.39 . +4.13 -0.16

(SL-3)28/39 5 1 95 -26.20 -29.1]. -30.93 -29.02 -32.55 . -27.39 -24.94 -29.34 -28.68

+2.48 -0.4:t -2.24 -0.34 -3.86 +1.30 +3.74 -0.66

(SL-3)28/39 5 2 47 +37.18 +30.8I +28.78 +32.05 +28.38 +34.37 +36.36 +31.44 +32.43

+4.75 -1.51 -3.65 -0.38 -4.05 +1.94 +3.93 -0.99

(SL-)79124 5(2) 1 94 +48.54 ' +50.91L +34.74 +51.05 +50.48 +59.78 +64.92 +43.80 +50.53

-1.99 +0.34 -15.79 40.52 -0.05 +9.25 +14.39 -6.73 I

00

II
Average of (SL.2)6, 01 +7.70 +2.91 -4.70 -1.45 -2.76 . +3.07 . +6.85 40.63 +1.53

(SL-2) 9, and (S,-3) 7/18 61 +6.17 +1.3) -6.24 -2.98 -4.29 +1.54 +5.31 -0.90 0.

Table 2. Results of Linefitting. [Offsets 0 in Millivolts. ai Defined as 6i 0i - 0a ]
i I. 1. avg



(asu).iams M,,a ) Sm 9E.. Ext A to  8 C

(SL-2) 6 5 2 45 15.9 98.9 12.40 8.54 0.761

(SL-2) 9 5 2 43 11.1 127.4 +22.61 9.19 0.609

(SL-3)7/18 5 2 47 29.26 148.4 +28.70 11.07 0.468

(SL-3)28/39 5 1 95 18.48 95.56 -11.61 15.07 0.871

(SL,-3)28/39 5 2 47 24.96 43.70 +1.94 5.49 0.929

(SL-4)79/24 5(2) 1 94 25.34 65.0 +25.0 15.27 0.225

Table 2 (continued). Results of Linefitting. [A in Millivolts, to and B in Nanoseconds, ( in Degrees]
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'igure 6 presents the results of the linefitting with and without offset

fitting and subtraction for SL-3, Pass 28/39, Mode 5, Submode 2, and the

set of estimated offsets is also listed in Table 2. Notice that the average

of these offsets is more than 10 times as large as in the first three cases

discussed above. Notice also the considerable difference in risetimes for

the fits with and without offset corrections for M5, SM2 of Pass 28/39.

Proceeding to the pulse compression and applying the same operations

to the data of Submode 1 of Pass 28/39, Mode 5, the results of Figure 7

are obtained, with the offsets again listed in Table 2 . Here the diffi-

culty is even more extreme; the fitting program prefers large negative offsets!

The problem here seems to be that there simply is nota sufficient num-

ber of data points in the earlier portions of the mean return waveform's

leading edge, so that the fitting program cannot distinguish between the

variables 8 and t (and also offsets). Figure 8 may be related to this

point; it shows the various waveform sensitivities to changes in A, to, 8,

and E as calculated for the particular values of these as determined for

S~T3- Pan 7/18. Mode 5. SM2 (see Figure 5 ). The function £ itself will

have the same shape as the derivative (dfo/dA) shown in Figure 8 , and it

is apparent that the (dfo/dt ) and dfo/d8) curves have somewhat the same

behavior in the upper half of the "ramp" portion of fo. In the lower half

of the ramp these two derivatives are clearly distinguishable in their effect

as they have opposite signs. We think that the major difference between the

results for Mode 5, SM2, for SL-3, Pass 7/18 and Pass 28/39 is that the former

pass had adequate S&H sampling in the earlier half of the ramp and the 
latter

pass did not. We think that this may have been due to a greater pointing

angle which led (because of the change in mean return waveshape as a result

of increasing E) to a change in tracker bias point such that the tracker posi-

tioned the S&H gates too late in time, but we can't prove this conclusively

from the data of Pass 28/39.

One other point that might be remarked on Figure 8 is that the sensiti-

vity to E increases as one moves later in time. This is simply the familar

result that the later plateau regions are more sensitive to pointing angle

than is the ramp region where the pointing angle is less than the half-

beamwidth of the antenna (when the pointing angle is greater than the half-

beamwidth, the mean waveform is grossly distorted and no longer characterizable
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Figure 6. Linefitting Results For SL-3, Pass 28/39, Mode 5, Submode 2.

Upper Curve Is 4-Parameter Fit With Zero Offsets, Lower Curve

Is 12-Parameter Fit After Subtracting Offsets.
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Positions of S&H Gates, MS, SM2.
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- 1. dfdf

100. d~o)

-5.-.

Figure 8 . Theoretical waveform derivatives calculated for A=148.4mv, to=28.7ns,

$-11.07ns, and E=0.47 degrees, as found by 12-parameter fit to

Pass 7/18 of SL-3, Mode 5, Submode 2. S&H gate positions in each

subsubmode are indicated by arrows.
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as having a ramp and a plateau). Thus for determining the pointing angle

from the S&H waveform data (as needed in ao work for example), the lOOns

pulsewidth submode would seem preferable to the 20ns submode.

Figure 9 shows again the S&H offset estimation via linefitting for

SL-4, Pass 79/24, M5, SM1. Here a different problem is built into the again

unacceptable results. It is now thought that the antenna characteristics

changed between SL-3 and SL-4 and without adequate knowledge of the new

antenna patterns, the fitting routine's constant y is not adequately known.

[Recall that y is a beamwidth-related factor determined as specified by the

earlier Applied Science Associates Report on Task D as cited in the discus-

sion of f(t) several pages earlier.] In addition to the uncertainty in y,

the results of Figure 9, with offsets as listed in Table 2 , have very large

positive offsets. These offsets show an apparently quite different distri-

bution about the mean offset than all other entries in Table 2 [see specifi-

cally the i in that Table].

Finally, there is nothing in the preceeding discussion which restricts

Our eZZOrCb* L o.- Glioule;5 -cOr -2 -d _5 CXCCr,- f..'C_-ci -eeec

to 4 subsubmodes and to 32 data points, and the general linefitting procedure

has also been applied to three different submode 0 results from different MS,

SL-4 passes. These again are subject to the uncertainty in the beamwidth-

related constant y. The results from these passes are presented in Figures

10, 11, and 12, and here again the results are only partly consistent. There

is very little more that can be said about the S&H offset problem at this

time; a general approach has been described and the results are mixed. Some

more variations on this should be carried out, and we again emphasize the

view that the present report is only a statement of progress to date on an

unfinished problem. The remaining pages in this section are addressed to a

different waveform-related problem, that of the mean return waveform's statis-

tical properties.



-25-

O -S2IO Solid lines - fitted curves
ro * S2 1
3 a S12 A - 126,4 my

SS2 2to 10.78 ns
0 - S2M3 - 32.24 ns

0> - 0.600
0

0

0

OI

O 0

A -.65.0 my 03 - +34.7 my

t o -:25.0 ns 04 - +51.0 my

0 .15.27 ns 0 +50.5 my

S0.22o 06  +59.8 mv

0, - +48.5 my 0, - +64.9 mv

0 2 - +50.9 mv 08 443.8 my

T
Upper curve's baseline

6 000"

Lover curve's baseline

0. 100. 200.

Time, in nanoseconds

figure 9. Linefitting Results For SL-4, Pass 79/24, Mode 5, Submode 1.

Upper Curve Is 4-Parameter Fit With Zero Offsets, Lower Curve

Is 12-Parameter Fit After Subtracting Offsets.
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Figure 10. Linefitting Results for SL-4, Pass 78/23, Mode 5, Submode 0.

Upper Curve Is 4-Parameter Fit With Zero Offsets, Lower Curve

Is 12-Parameter Fit After Subtracting Offsets.
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Figure 11. Linefitting Results For SL-4, Pass 83/29, Mode 5, Submode 0.

Upper Curve Is 4-Parameter Fit With Zero Offsets, Lower Curve

Is 12-Parameter Fit After Subtracting Offsets.
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Most of the discussion thus far has been concerned with the concept

of the mean return waveform, and the arithmetic averages of S&H gate reading

have been used as estimates of this mean return waveform. It is useful

to perform the sum of squares of gate readings at the same time standard

in order to be able to estimate the standard deviation as well as the mean,

and we practically always do provide standard deviation estimates in all

our S&H-related programming.

But the mean and standard deviation are not sufficient to characterize

an unknown distribution, and one needs additional information. In the

following discussion we will ignore any tracker time-jitter effects by

assuming that either such effects are negligible or have already been cor-

rected for (by the time-realignment process for example) before the histo-

gramming procedure is applied.

By selecting several points (at different times) on the mean waveform

and producing a histogram at each point of the frequency of occurrence of

- h . gc, w can gCZ.-are -oz-tnese- poin.s coarse --estimate ci

the probability distribution function (pdf) of the S&H voltage. The "coarse-

ness" of the pdf estimate is reduced as one increases the number of histo-

gram bins but this cannot be done without limit because of the requirement

of having an adequate number of samples in each bin. For this reason and

because of practical limitations on how much computer space is to be tied

up or how many output points have to be plotted, an upper limit of the order

of 100 bins is reasonable for at least the first try at the problem of obtain-

ing the waveform statistical properties via the histogram approach.

A general-purpose histogramming subroutine HIST has been written for

this purpose.* An entry point HISTI is provided for initialization and

another entry point HISTO prints out the results of histogramming. We will

sketch here the use of HIST, HISTI, and HISTO for the individual inputs to

*At the time of this report's writing, this histogramming procedure had not

yet been implemented. The subroutines HIST had been debugged and delivered

to Wallops Flight Center and the first results were being obtained while

this report was being prepared.
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S&H gates 1,3,5 and 7 in each subsubmode of each submode of interest. For

a first trial, the histogramming range should be from -0.050 volts to +0.450

volts, virtually the entire non-saturated range of the S-193 S&H gates.

We present immediately below the outline of the form a main program will

have to carry this out, under the assumption that all S&H data in each given

subsubmode will be used to achieve the maximum precision available for esti-

mates of the statistical properties at S&H gates 1,3,5, and 7 on the mean

return waveform. Appendix C provides a program description for subroutine

HIST: it will be necessary to refer to that description of HIST to under-

stand its use in the "main program" below.

"Main Program"

other DIMENSION stuff ....
DIMENSION JH (100) ,JH2 (100) , JH3 (100),JH4 (100) , SUMS1(2), SUMS2 (2) ..

DIMENSION SUMS3(2),SUMS4(2)
DATA NB/100/,NSIGMA/1/,XBAR/.250/,SIGMA/.200/
other initialization

.... new submode
I -----. new subsubmode

- initialization within subsubmoae
SCALL HISTI(XBAR,SIGIA,NSIG,NB,WB,XL,JH1,NHEI,SUMSI)

I I CALL HISTI(XBAR,SIGMA,NSIG,NB,WB,XL,JH2,NHE2,SUNS2)

SI CALL HISTI(XBAR,SIG4A,NSIG,NB,WB,XL,JH3,NHE3,,SUMS3)
CALL HISTI(XBAR,SIGMIA,NSIG,NB,WB,XL,JH4,NHE4,SUMS4)

I --- loop to read S&H data, 104 sets per frame, for all SM framed

I read S&H #1 into SH1
Sread S&H #3 into SH2

I read S&H #5 into SH3
I read S&H #7 into SH4
I CALL HIST(SH1,WB,XL,JH1,NHE1,SUJSl)
CALL HIST(SH2,WB,XL,JH2,NHE2,SUMS2)

I CALL HIST(SH3,WB,XL,JH3,NHE3,SUS3)
I CALL HIST(SH4,WB,XL,JH4,NHE4,SUMS )
- - --end of loop for individual set of S&H values
write heading for S&H #1

I CALL IIISTO(NB,WB,JH ,NHE ,SUMS )

I write heading for S&H #2
S CALL IIISTO(NB,WB,JH2,NHE2,SUMS2)
write heading for S&H #3
CALL HISTO(NB,WB,JH3,NHE3,SUMS3)

I I write heading for S&H #4
CALL HISTO(NB,WB,jH4,NHE4,SUMS4)
-... -go to next S M

S.. . -go to next SM

finish out problem, etc.
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SECTION III. WAVEFORM TIME-REALIGNMENT AND AVERAGING

The background for the results of this section is provided 
by an earlier

Applied Science Associated report ["Final Report on Task A - Engineering

Studies Related to the Skylab Program", prepared under Contract 
NAS6-2307,

approx. July 1973]; that report is also the source 
for the weighting func-

tion used to estimate true altitude tracker position, given the 
average of

the tracker's positions over an approximately 1/8 second 
time interval. We

will first discuss briefly the need for time-realignment and 
the procedures

to carry out a realignment followed by an averaging operation, then repre-

sentative results will be presented. The computer program details involved

in this are in Appendix D.

Because the 8 S&H gates are fed directly to the digital 
delay generator

(DDG) in the S-193 radar altimeter's altitude tracking 
loop, finite altitude

rates and/or tracker jitter will lead to each S&H set's sampling 
different

time-positions on a return waveform. Simply averaging together all measure-

ments by S&H gate #1, gate #2,...,8 to form average sample points 
#1, #2,

...,#8 without correcting for the tracker litter shouid iead -ro a mean-wave-

form distortion and an increase in the variance of the 8 
sample points. A

more detailed investigation of jitter effects on waveform 
and variance is

provided by another Applied Science Associates Report ["Final Report on

Task D - Engineering Studies Related to the GEOS-C Radar Altimeter" by

L. S. Miller and G. S. Brown, prepared under Contract NAS6-2307, 
May, 1974].

Briefly, the mean waveform is "smeared", essentially by 
a convolution with

the tracker jitter process's probability density function 
and there is an

attendant increase in variance estimates. The waveshape effects should be

negligible for the S-193 100 nanosecond pulsewidth modes but significant

for the short pulse submodes of Mode 5, the 10 ns (nominal 
design pulsewidth)

direct or pulse compression submodes.

The correction for the tracker jitter involves comparing 
instantaneous

tracker position with "true" tracker position; this difference is a measure

of how far the 8 S&H gate results must be repositioned earlier or later in

time before adding up a number of separate sets.of S&H 
data to determine an

average waveform over a suitable averaging period. 
There are two unknown

quantities to be estimated to find this instantaneous tracker error however,



-32-

the "true tracker position" (or equivalently, the "true" altitude) and 
the

instantaneous tracker position.

To determine the "true altitude" as a function of time, a low-order poly-

nomial is least-squares fitted to the altitude data over an entire submode.

This is in effect a type of smoothing operation. In practice, the maximum

degree is 4 for the polynomial fitting [done in subroutine POLRG as explained

in Appendix D].

The altitude outputs from the S-193 altimeter at the 8 per frame 
rate

are not 8/frame measurements of the tracker's instantaneous position. Rather,

each altitude output is an average of the tracker's position during the 
-1/8

frame preceeding that output. Part of the Applied Science Associates Task A

Report, July 1973, was devoted to deriving a weighting function 
to estimate

tracker instantaneous positions, and that weighting function is -used 
in this

work.

The 8/frame instantaneous tracker position estimates are used to 
produce

the needed 104/frame S&H time corrections, and a spline is used for 
this

[see Appe-Ldix D]. LThe time-realigned sets of SuI readings arc

a set of time bins [as described in the Applied Science Task A Report 
and

summarized by the time sketch in subroutine VTADD in Appendix D 
of this

report], and the results are written on tape on a frame-by-frame 
basis. A

subsequent averaging operation reads the frame-by-frame tape, and 
prints and

plots the results on a 10 frame basis [this last program was developed 
by

Wallops personnel and is not described in this report].

Figure 13 summarizes the overall time-realignment and averaging as 
just

described. Figure 14 shows a portion of actual altitude data as it comes out

of box D of Figurel
3 ; also indicated are the 8/frame instantaneous tracker

error estimates out of box E of Figurel
3. Then Figure15 repeats these 8/frame

instantaneous error estimates and shows the 104/frame individual 
tracker

errors as produced by the spline - these 104/frame error estimates provide

the time-corrections to be applied before summing the 104/frame 
sets of S&H

data.

It is necessary that the S&H data already be corrected for dc offsets

before carrying out the averaging after the time-realignment. 
This is because

each time bin's contents includes contributions from several different S&H
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gates over the time period of a frame, and there is no way 
to calculate or

correct for this combination of several different S&H offsets after 
the

time-realignment is applied.

One additional problem (not shown on Figure 13) is that it is possible

that some of the S&H readings in the primary data tape (from JSC in 
Houston)

may fall outside the allowed region of the S&H calibration 
curves; this occurs

because of the way in which the calibration curves were handled 
in the JSC

processing. To avoid contamination of the waveforms by these invalid data,

a test procedure has been built into the programs at Wallops to detect the

occurrence of S&H re'adings outside the allowed range, and to flag 
these data

so that they are not included in the waveform averages determined 
in the

later program steps. Consequently there will not necessarily be 104 contri-

butions per frame to the waveform averages, but 104 will be the maximum num-

ber possible per frame.

Decisions have yet to be made about how to handle date for which 
there

are appreciable numbers of loss-of-lock indications in the altitude 
tracker's

uu~ut TisIsPar-tcf, --h- 1age, ..genera2. -pz'Thlem -of dsta editlng And- as

already mentioned in the introduction to this report, no suitable 
set of

data quality criteria has yet been found which would permit the implementa-

tion of an automatic data editing part of the overall waveform processing.

Figure 16 presents a preliminary indication of the time-realignment 
re-

sults from SL-2 Pass 9, Mode 5, submode 2; what has not been 
shown on the

figure is that points shown are of unequal weights. 
The next step would be

to form appropriate weighted means and then use these as input 
to a final

pass through X2MIN to determine final mean return waveshape 
parameters. It

is apparent however that no striking change in the leading 
edge risetime has

appeared - and this is the parameter of the greatest interest 
in attempts to

detect sea-state from S-193 waveform measurements. Another disturbing feature

not displayed in the figure is that no changes were 
found in variances esti-

mated from the time-realignment procedure as opposed to variances from simply

summnning up all of the measurements of a specified S&H gate - we had expected

to see variance changes approaching 25%.

Figure 17 presents results for the time-realignment process 
applied to

SL-3 Pass 28/39, Mode 5, Submode 1; no offset corrections have been applied
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Figure 16. SL-2, Pass 9, Mode 5, Submode 2 Time Re-alignment Results



No offset corrections have been applied. Results shown are averages over 10 frames

in each sub-submode (except sub-submode *: for which only 5 frames of data are taken).
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Figure 17. SL-3, Pass 28/39, Mode 5, Submode 1 (Pulse Compression) Time-Realignment Results.
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to the S&H data before time realignment. This figure displays one of the.

hoped-for outcomes of the time-realignment as there seem to be data which

are recoverable in the leading edge earlier than the first S&H gate. Since

the S&H set started too late on the waveform, even in subsubmode 0, these

data are very desireable. However, we again here have totally unknown S&H

offsets. The only chance of recovering the desired information might be

some sort of iterative approach using first the offset-determining procedure,

then the time-realignment; by going back and forth, and carrying lineshape

parameters from the time-realignment back to the offset determination, it

might be possible to recover something. We have not yet tried this.

Returning to the SL-2 Pass 9, M5, SM2 time-realignment results, no sig-

nificant changes were obtained for a variety of different guesses at S&H

offsets. Eventually growing frustrated by not being able to make the situa-

tion better, we tried to make things worse just to determine that there were

no overlooked sign errors. For instance, first we replaced the weighting

function by a single unit weight(which is equivalent to simply bypassing the

box E of Figure 13) - again, no significant changes were found in the results.

Finally we reversed the sign ot the time-error correction with the results-

shown in Figure 18. There it does appear that the risetime is shorter for

the non-time-realigned results than for the deliberately erroreously corrected

results.

These results all indicate that we are not now gaining enough informa-

tion from the time-realignment to justify applying it in any automatic or

routine fashion to the remainder of the S-193 waveform data. Some additional

small-scale investigation of time-realignment should be continued on a case-

by-case basis, and the work presented in this report providesthe basic build-

ing blocks for this. The change in the short-pulse mode's pulsewidth from

nominal design width of 10 ns to an actual pulsewidth closer to 20 ns is

probably the largest single factor contributing to our failure to realize

benefits from time-realignment. It is worth noting that our S-193 experience

further supports the conclusions of the earlier Applied Science Associates

Report Jour Task D of Contract NAS6-2307] which indicated that waveform time-

realignment was not going to be necessary for GEOS-C if that system met its

specifications.
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APPENDIX A. SUBROUTINE X2MIN FOR GENERAL FUNCTION FITTING TO DATA.

In our investigation of the S&H offset in waveform data from the S-193

radar altimeter, we used a general-purpose subroutine X2MIN for fitting a

theoretical function to the experimental data. X2NIN is sufficiently general

as to merit further description in this appendix. We did not invent X2MIN,

and the version presented here differs only in very minor details from a

program obtained from Professor Dwight W. Carpenter at the Duke University

Physics Department (Dr. Carpenter is now at Limestone College, Gaffney,

South Carolina). Dr. Carpenter's program was in turn an extensive revision

of an earlier general-purpose fitting routine from the University of Illinois.

The following description is entirely derived from Dr. Carpenter's program

write-up at Duke University.

X2MIN is a FORTRAN subroutine to fit an arbitrary function to given

data points by minimizing the weighted squared deviations of the points from

the function. The function is of the form,

YY (Y1 2 .* NX1A1A2 1 ... A CC2 " NCY'2...... .V .25 "C'

The X's are the independent variables, the A's are the variable parameters

to be adjusted by the program, and the C's are constant parameters. The
i i

data consists of a set of NP points of measured Y at given values of X19

X2 ,.. Xwith associated error estimates oYi; i = 1, NP.

NP i i 2
2 [Y FX(X , A,C)1

X i 2
i=l (oY ) 2

The program requires initial guesses for the variable parameters A. Succes-
2

sive corrections are made to the A's until a relative minimum in X is reached.

Reasonably good initial guesses are often necessary. Additional constraints
i

may be placed on the A's by providing an error estimate CA on the initial

value of A . For each constrained A , the term

A i-A 2 2(A 2
initial final

Sad2ed to the 2is added to the X •_______ _____ __
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.2
The iteration continues until the fractional change in X in one step

is less than a given limit (CHILIM), or until a given maximum number of

interations (MAXITR) is reached.

The user must supply a function type FORTRAN subroutine, FUNCTION FX,

which will evaluate FX (and, optionally, its derivatives with respect to the

A's) for a given set of X's, A's, and C's. The data deck organization for

any one problem is as follows:

Card Type Information No. Short Cuts

Comment Any 1 Repeat? +

Size NP,NX,NA,NC,CHILIM,MAXITR,NPLOT 1

Data Label X,Y,CY names 1 Repeat? +

Data Point X,Y,OY values NP +

Var. Param (A) A name, initial value, step, constraint
NA "

Const. Param (C) C name, value NC

This may be followed by succeeding problems.. The Short Cuts may be used on

succeeding problems if portions of the input data are to be repeated. A

single card which preceeds the first of the problem decks sets up a set of

ten general flags INFLAG(10) which are available through the labelled COMMON

area, COMI.

The calling procedure for X2MIN is as follows:

---Misc Job Control Cards -- (input on device 1, output on 3)--

COMMON/COML/INFLAG(10)
READ (1,5)(INFLAG(I),I=l,l0)

5 FORMAT(1015)
CALL X2MIN
STOP
END

Subroutine X2MIN calls the additional subroutines LSQMIN, MINV20,

XPROB, and PLOT4 (with entry points PLOTWD, PLOT3, and PLOT3L) as well as

function FX. Following details of the X2MIN input data and of FX in general,

source listings are provided for X2MIN, LSQMIN, MINV20 and XPROB. In addi-

tion to facilitate use of X2MIN elsewhere and to ease debugging or modifi-

cation, logical flow diagrams are provided for X2MIN and LSQMIN. Because

the details are computer-dependent, no source is provided for PLOT4 (with
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PLOTWD, PLOT3, and PLOT3L); however a description of PLOT4 is provided.

X2MIN Input Data

Six types of data cards are described in the order of their appearance

in the data deck:

1. COMMENT CARDS

The comment cards will skI-ply be read and printed out. At least one

comment card must appear. EaI card except the last must have .... (four

periods) punched in columns 77-80; the last card must not have them.

If any comment card starts with the word REPEAT in columns 1-6, the

program will expect the Variable Parameter (A) cards. to .follow the last

comment card. The Size, Data Label, and Data Point information will be

carried over from the preceding problem.

2. SIZE CARD

Seven numbers appear on one card in successive fields of 10:

NUMBER FORMAT DESCRIPTION ALLOWED VALUES

NP 5X, 15 Number of data points 1-100

NX 5X, 15 Number of independent variables (X's) 1-10

NA 5X, 15 Number of variable parameters (A's) 1-20

NC 5X, 15 Number of constant parameters (C's) 0-20

CHILIM 5X, F5.0 AX2/X2 convergence test. (If left
blank, 0.001 is used) Any positive value

M4AXITR 5X, 15 Maximuminumber of iteractions taken.

(If lef)- blank, 30 is used) Any positive integer

NPLOT 5X, 15 1 causes plots to be deleted 0 (blank)-l

3. DATA LABEL CARD

Alphabetic characters, 10 columns each, giving the names of the variables

'X2"' '.NX' Y , oY (NX + 2 names) in sequence. These will be used as column

headings in the printout.

If the word REPEAT appears in the first 6 columns (instead of the labels),

the Data Point Cards must be;deleted. The Data Label and Data Point informa-

tion will be carried over from the previous problem.
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If the words STAT ERROR are inserted on the Data Label Card 
as the

label for CY, the value taken for GY is / (not V-) for each point. A

lower limit of 0.1 is arbitrarily imposed on FX for this calculation. 
The

UY columns on the Data Point Cards are ignored in this option.

4. DATA POINT CARDS

One card for each data point as follows:

X,' X2' "...NX', Y, aY in format (8F10.O). 
If the aY are left blank (and

the STAT ERROR is not specified), all points will be given 
equal weight and

portions of the output dealing with errors will be 
deleted.

5. VARIABLE PARAMETER CARDS (A'S)

One card for each parameter as follows:

Parameter Name (AlO) Alphabetic name of parameter

Continuation Flag (Al) If C, the initial value is taken as the

final value in the preceding problem.

If blank, the new initial value is
• - .. ... t e- f em ,he ,.n rd :.

Initial Value (F14.0) Initial Value

Step Size (F15.0) Step (AA) used to find dY/dA, or blank if

subroutine computes dY/dA directly.

Constraint (F15.0) Standard deviation (aA) assigned to initial
value. If blank (or zero), no con-

straint is made.

6. CONSTANT PARAMETER CARDS (C's)

One card for each (if any) constant parameter as follows:

Parameter Name (AIO)

Continuation Flag (Al) - as above in A's

Constant Value (F14.0)

EVALUATION OF DERIVATIVES

The program must evaluate the derivatives of FX with respect 
to the A

parameters. This may be done in one of two ways for each 
parameter:

(1) A step size AA (non-zero) may be given on the A cards. The program

then makes a step AA in A and takes AFX/AA as the derivative. The step size
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must be chosen small enough that the derivative is essentially constant over

the step, but large enough to make a significant change in FX. An appropri-

ate step size is often critical. It may be checked by varying the step size

to see that the results are independent of reasonable changes.

(2) A formula which evaluates dFX/dA for each A may be written into

the function routine FX. In this case, the function must return

FIX = dFX/dA(JA) whenever JA > 0

and

FX = FX function whenever JA = 0.

JA is a flag given the subroutine by the main program. The step size field

must be left blank (or zero) for each parameter whose derivative is to be

computed in this way.

The two methods may be intermixed if desired. The main program gives

the flag JA > 0 for those A not given step sizes.

PRINTOUT

The printout contains the following information for each problem:

All input information.
2

The value of X and the A's at each iteration.

The final errors on the A's, /<(AA)>

The degrees of freedom and x2 probability (high number for good fit,

low for bad, in percent)

The value of the best fit function FX at every data point

The deviation of each data point Yi from the best fit FX

The (deviation/oY)2 for each point, i.e., the contribution to X
2

The number of the worst point

A plot of the deviations in Yi vs
i i

A plot of the Y vsX 1

A correlation matrix

The error matrix is (EM)ij = <AA AA i> where AAi is the error in the

parameter Ai. The rms error on A is /<AA * AA > . The correlation matrix

is related to the error matrix by:

(CM)ij = (EM)ij/ <2>. <AA>
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(CM) will range from 0.0 for uncorrelated parameters to + 1.0 for com-

pletely correlated parameters.

ERROR MESSAGES

The message SINGULAR MATRIX will occur if a matrix is encountered which

cannot be inverted as required. This usually indicates an error in the data

or in FX.

FUNCTION FX

The function subroutine FX must be supplied. The FUNCTION, COMMON, and

DIMENSION cards must be as shown. The routine must evaluate FX for point JP;

FUNCTION FX (JP ,JA)

COMMON/COMl/INFLAG(10)
COMMON X,Y,A,NA,NX,NC,C,NP
DIMENSION X(100,10),Y(l00),A(20),C(20)
-test on JP<0---

FX = function evaluated for X(J,l),...X(JP,NX),A(1),...A(NA),
C(1),...C(NC)

RETURN
END

In X(JP, JX), JP is the point nunber (l<JP<NP) and JX is the independent

variable number (l<JX<NX). Immediately upon entering X2MIN for the first

time, there is a statement "F = FX(-l,-l)"; after the first problem is finished,

the program will execute the statement "F = FX (0,0)" immediately prior to

reading each new problem. The values -1 and 0 for JP are provided for possible

initialization in FX, and must be tested for. The use of COM1 is optional;

only if some use is to be made of flags INFLAG(10) must COMI be provided in

FX.

If the function is to evaluate derivatives explicitly (as described above

as method 2) JA must be tested:

IF (JA) 1, 1, 2

1 FX = FUNCTION
RETURN

2 FX = derivative dFX/dA(JA)
RETURN
END

EXAMPLE

P is measured for various T and V for gasses with known R. One wants



-47-

to find AA and BB in the following equation:

P = R*T/(V - BB) - AA/V2

The FX subroutine might be:

FUNCTION FX (JP,JA)
COMMON X,Y,A,NA,NX,NC,C
DIMENSION X(100,10),Y(100),A(20),C(20)
IF (JP.LE.0) RETURN

T=X(JP,i)
V=X(JP,2)
R=C(1)
AA=A(1)
BB=A(2)
IF(JA) 1,1,2

1 FX=R*T/(V-BB)-AA/V**2
RETURN

2 GO TO (3,4),JA
3 FX=-1.0/V**2
RETURN

4 FX=R*T/(V-BB)**2
RETURN
END

A typical data deck for this problem mighnt hen appear uf lws

the use of the REPEAT feature, and the continuation flag C on parameter BB

in the repeated part):

'-I
0

C4 C~4 '4

FIT AA AND BB FOR GAS
NP= 5 NX= 2 NA= 2 NC= 1

TEMP VOL PRESS P ERROR

300.0 27.6 18.4 0.10
230.0 20.0 32.4 0.15

240.0 20.0 15.2 0.10
AA .03
BB .01
R 50.2

REPEAT WITH AA CONSTRAINED TO .03 +-.01

AND USING STEP SIZES TO FIND DERIVATIVES (CONTINUE BB)
AA .03 .0001 .01

BBC .001
R 50.2
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NOTES

The constraint in the A's is useful for two things:

(1) introducing outside knowledge about a parameter

(2) keeping a variable from running wild in the early stages of

fitting. The constraint may be released in later stages.

The function FX has available to it NA and NC which may be useful in

having the number of terms set at run time, or changed during a run.

The C's may be used as program switches by the function FX as well as

actual numerical constants. Thus several different functions could be in-

cluded in one EX. The flags INFLAG(10) are provided for additional switches,

but the first three of these are used by PLOT4 as described later.

If the step sizes are used, one should see what the effect of the choice

of size has on the results.

A high correlation coefficient between two parameters (ICI>-9) means

variations in the two parameters have a similar effect on the function,
~.%...... L 'oUar' to an,.' ,u .... i argc --,-6-.-

should try to find a parameterization which will give low correleations.

Beware uf C>.98.

The following material will be presented in the order listed here:

X2MIN source listing, X2MIN flow diagram, LSQMIN source, LSQMIN flow diagram,

HINV20 source listing, XPROB source listing, and description (6nly) of

PLOT4.
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a wZ(j).-SQRT(1./wT(J)) I1~j

I I CJ -ABS(YPJ)

19I C.J.LT.CLO T00

T [CSQ(j)-(YP(J)/WZ(J)**
2

II JLO4-j )
I WRITE(3,210)J, (XGJoI) 9. I COC

~IIE3197 ((AX(K.3), 1-lNX) ,Y(J) ,WZ(J).Y'Q(J). I rIE(3.1003)
1W (J),CSQ(J) I -END OF DATA-'

I5 
-... - -- 208

I WRITE(3.209)

V..3) ,JI I (X .E J) 20 J1.0 STOP

A

(NPLOT.GT.0).OR. T

972 (INPLAC(l) .LE.0)

I Carry_ tu LineIPrinter Plot Details

6
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200

200

VRITE(3,2006)
... SINGULAR
MATRIX..

WRITE(3 2009)
".cuiSQ

INCREASED..."
RETURN

RETURN

200
C%

R1TE(3,2007)
"...ITERATION

IMIT EXCEEDED..."

RETURN
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PLOT4, the Line-Pointer-Plotting Subroutine Called by X2MIN .. ...

As now used, X2MIN calls a line-printer-plotting subroutine PLOT4

which has additional entry points PLOTWD, PLOT3 and PLOT3L. Since PLOT4

forms a plot image by storing one character in each byte (8 bits) of a

4-byte word, the subroutine is specific to the IBMI 360/370 series com-

puter we used; for this reason we do not provide here the source listing

for PLOT4. However, a brief description follows for those users who would

wish to incorporate line printer plots at their own computer. (The alter-

native to this would be to delete all statements in X2MIN which call PLOT4,

etc.; that is, delete all statements between 209 and 579 in the X2MIN listing.

Statement 209 must be left in, 579 must be removed, and the "go to 6" state-

ment immediately following 579 will then appear immediately after statement -

209 to provide the necessary transfer of control.)

The size of the plot is set up automatically at the first call of PLOT3,

additional calls to PLOT3 or PLOT3L provide additional data to the plot, and

the call to PLOT4 prints out the accumulated plot image and resets it.

The automatic setup provides that all the points from the first PLOT3 call

are included within the axis limits. The automatic setup sets 10 print

spaces per grid line in the x-dimension and 5 print spaces per grid line in

the y-dimension with the grid lines adjusted to give round or "nice" numbers

and hence the points plotted won't in general extend to the edges of the plot

space. The maximum grid widths allowed for NGX (the number of X-grid lines)

and NGY (Y-grid) are both preset to 12, as appropriate to a line printer,

but a call to PLOTWD(MAXGX,MAXGY) will change these limits to MAXGX (maximum

NGX) and MAXGY (maximum NGY). Reducing MAXGX to 7 permits output plotting on

the 80-character line of Teletype-like devices.

In X2MIN, the labelled common area COM1 provides ten flags, INFLAG(10),

for general setup; the first three of these are used to set the type of out-

put printer plots and the plot size. INFLAG (1) > 3 produces printer plots

of both of the fitted function with experimental points superimposed and of

the deviations between experimental and fitted points, INFLAG(1) = 2 provides

only the plot of the deviations, INFLAG(1) = 1 plots only the fitted function

with experimental data, and INFLAG(l) < 0 suppresses all plots. If INFLAG(2)
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# 0, INFLAG(2) and INFLAG(3) carry new values for MAXGX and M AXCY in a

PLOTWD(MAXGX,MAXGY) call; otherwise MAXGX and MAXGY are both 12.

PLOT3(C,X,Y,N) plots the character C at the N points X,Y(X and Y are

each one-dimensional arrays); the plot character C replaces whatever was

previously in the plot image.

PLOT3L(C,XX,YY,N) is called with either 0 or 1; if N=1, a line is

drawn (using character C) to the single point XX,YY from the point input of

the previous PLOT3L call, provided that N=1 in the previous call also. 
The

first PLOT3L call with N=1 provides no output, and a N=0 call cuts the string

to permit a new "first" N=1 call.

PLOT4(LX,XLAB,LY,YLAB,LT,TITLE) prints out the accumulated plot image

and resets it. XLAB, YLAB, and TITLE are character strings for the x and y

axes and the title, with LX,LY, and LT being the string lengths.



APPENDIX B. SUBROUTINE FX.

The following pages provide the source listing and the flow diagram

for subroutine FXwhich supplies the lineshape function and its derivatives

with respect to each of the 12 lineshape parameters; the mathematical de-

scription of this FX has already been given in Section II. FX is for use in,

and follows the rules established by, the general line-fitting subroutine

X214MIN as described in Appendix A.

Because the Bessel Functions, I and I,, and the probability function

are needed in FX, listings are provided for the Bessel function subroutine

BESI and the probability function subroutine NDTR. Both BESI and NDTR are

taken directly from the IBM Scientific Subroutine Package and are described

more fully there.



-~ ~ ~~ -)t (sgxx-~~E.1 a) it~.d 2~ -) I

009 C. U! COGC L

t. r

9L koVd lif)NVU SvM'J uhiodd aas tin dSS s oij A~ '. S 04d ---

I... 39CZVd IVIlflVU S a d1iVdUdd 4iS tIl dl S Lt.. A-.i S~ s~

C)~ 
9800Y. ~

A'l"

rj.) 1112 -01

LS~~u+XA*~~~)V=XDo G4______Us______zv______A

ISOXA'9lU)~~~~~~~~a.LGN~~L L"v o ...~ ... .() ~
V.U Ib.3 d a

~*L a Mans.IS. (Co11-%0)~I *c 0 00 3

COL C. D ( l. t ) i

lidu~o~v III I'dS~L~LL~hJ OY~l ~ -

ltsfia) 6..~p bc! O ioUI (.'3,)

Pi I* iUU* v~A OU -I j. I

G G- sVC- 0L.-1.. .(Ldr h4r-vhI.1



FXDT4.X(jp.l)-A(2) 
X22A3(I

SX4SI!4(X12)
DT.LE.O. 100 CX4-COS(X12)

ARG14-2.*DOG*SX*SDT FXI-A(1) *DTBAESAl
J.G.t. CALL BESI(ARG1,IZERO, (XIA/(BETA*SR2P1))*

DELTA4-C(1) I.E)EP-T*B/)

(JPT.0.OR(NALE.) TDOG4-DELTA/ (2)
(J?.T.0).OR.(t4ALK.4. ~BETA.A(3)

ORt. V~FLAC 4 .E DTB-DT/BETA TRETL.
SDT-SQRT(DT) IRN.

1.ARETUR T WRITE(3,900)

C-12)Xi-C (3) ICOUV 7o0

XEA()COV-EX(1ELTA* CALL PESI(AtC1,

SOS.YK)C T IE R. E. 0
JA.E .3 0

RIIE(3,900)
L [ALLNDT(DT.PADS)ION! EER

C(I)-X JAGE.2750

140F*A*BXAJA.CGE.4 600

DIB.L'.15

FKSHJP-*((P-p8)jEA-EXP (.DTB*DTB2.

FX4.A(1)"*EB(A'~

OFST0. (A-4)EQ.KH n+ RETRN EA*(XIA/(BETA*SIR2Pt)))

tE1Vft



100

T
JA.GE.4 T RETURN

JEETMA RE)R

JA.GT.O
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APPENDIX C. SUBROUTINE HIST

The following several pages provide the description of the subroutine

HIST (with entry points HISTI and HISTO) which is intended for use in

obtaining the probability density function at one or several points on the

mean return waveform. A brief description of how to use HIST for this has

already been provided at the end of Section II of this report.
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Subroutine Name and Argument List

Subroutine HISTI(XBAR,SIGA,NSIG,NB,WB,XL,J,NHE,SUMS)

Entry HIST(XI,WB,XL,JH,NHE,SUMS)

Entry HISTO(NB,WB,WL,JH,NHE,SUMS)

Description

Subroutine HISTI, with entry points HIST, HISTO, is to allow the histo-

gramming of a number of observations of the variable XI. A call to HISTI

initializes the subroutine and calculates the width and location of individ-

ual histogram bins. Calls to HIST generate the histogram desired, and a

final call to HISTO causes print-out of the results; the call to HISTO does

not disturb the histogramming storage locations so that one may display an

intermediate result by HISTO and then continue to build up the histogram

by more calls to HIST. All variables used are listed in calling lists so

that it is possible to have several histograms being built up at the same

time.

For present subroutine dimensions, a maximum of 100 histogram storage

locations is allowed; these dimensions are easily increased if desired.

Subroutine Arguments (and Dimensions) in Calling List

XBAR These are input arguments to establish the range which

SIGMA the histogramming will cover uniformly with a total of

NSIG NB histogram bins. XBAR is the value at which the

NB histogramming routine is centered, and (NSIG*SIGMA)

is the width of the total range to be histogrammed.

Input data lying outside the range XBAR+(NSIG*SIGMA)

will be entered either in bin #1 or bin #NB, depending

on whether the input is below or above the range indicated.

WB These values are calculated in HISTI, given the inputs

XL XBAR, SIGMA, NSIG, and NB. WB is the width of an

individual bin, and XL is used in index computation in

HIST.

JH(10l0) Integer array JH is the histogramming "count" storage.
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NHE - Counter recording total number of histogram counts in

the locations of JH(100).
*

SUMS(2) = Two double-precision variables used for estimating an

overall mean and standard deviation for the histogrammed

variable XI; SUMS(l) is a running subtotal of individual

input values XI, and SUMS(2) stores the subtotal of the

squares of XI.

XI = Individual input value of the variable to be histogrammed.

Input/Output Performed by Subroutine

No input except through calling list. HISTO writes (on unit 3) the

probability density function estimates obtained from the histogram, together

with estimates of the mean and standard deviation. The pd.f. estimates may

be converted to total histogram-bin counts, if desired, by multiplying all

pA.f. estimates by NHE, the total number of histogram entries.
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Program Listing for HISTI, HIST, and HISTO- -

SUBECUTINE :-ISTI(XiR.,SIGMA,iJSIC,.:11LI VE,XL,JA.-,ST )

DIMENSICJJIldPT1)AWJ(OtUS
2

DCU13LE PRECISICIIN SUC1S,LXrlN.LDSG,U(
* IF (NB.GT.IG0) N~L=lU0
NHE=0
SX!MS( 1)=0.DO
SUMS(2)=G.DO

*DO 10 I=1,:.Nb
10 JH(I)=O

Q=N13-3
Q=NSIG*SIGMA/Q
WB=Q
XL=XE3AR-(NB-2) *0/2.
RETURN
ENJTRY -,fIST(XI, tL J.H,.;JHE,SUlMS)
1=2+INT( (XI-XL)/AND)
IF (XI.LT.XL) 1=1
IF (I.GT.!NB) I=lJS 4

20 NH-E=IIH{E+ I

SUMS( 1 )=SUMS( I ) +XI
SUMSC2)=SUMSC2)+XI*XI
RETUREN

,EvT ; 1 -. 1i.~ 4F. fl

Q=NHE
DQ=Q
DXMN=SUMSC 1)/DQ
DSG=SUMiSC2)-DC*DXMN*DXMN
SG=DSG/(D~- I .D0)
SG=SQRT(AES(SG))
XMr4=DXMM,
X=XL-IWB /2.
I=0
WRITE (3,30) t\JlE,UT

30 FCfRMAT/- FCLLCWING IS iISTOGP.M-DEPIVLD PDF FOR',.I5,

1' HISTCGRAM E*NTPIES,'/' IN FORM (CEINTERPEF). ,Irl WIL/TA=-,E13.6)

45 J=0
Do 35 K=1,4

IF dI.GT7 NJE) GC TO 50

XPRIJT(J)=X

35 PPTZJT(J)=QQ/Q
50 IF (d.GT.O) WRITE (3,40) (XPPN~T(K),PPF1JT(l0, ic1,Jj)

40 FCRMAT( ' -,4( 'C ,F8.3j ', ,F7.5. ') '))

IF (I.LT.rJ!3) GC TO 45

WRITE (3,55) NflE,XMNJSG

55 FCERMAT(- FCR ABOVE',15,- EN'.TRIESPMEAN-,El
3 I 6 .p", &, STD I)EV',

I E13.6/)
RETURN
END
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ENTRY
ISTI

Q4-N-HE *NB.GT.100
DQ+1

DXM-+S1ThSM1/XQ T

DSG*- SUMS (2) -DQ * DAN * D.XNNB
SG'-DSGI (DQ-1.)

SG'-SQRT (ABS (SG))
XMiN4-D)O2X

X+XL-WB/2. JNHE4-0 Q4-NB-3
J40sUM(1)4-0. Q4,-NSIG*SIGNA/Q

SUMS(2)-0 WB-Q

WRITE3,30)XL4-BAR(NB2)*Q/2.

I JH(l)'-0 RETURN

J4-0

ENTRY

HIST
I.GT.NB

J 4 -Ji I.2+INT ((XI-XL) /WB)
j XPBNT(J).-X

X4-X+tJBT
QQ-JH (I) X.TX -

PRNT(J)-QQ/Q

$ FSUMS()-Sums()+XIX

WRITE(3 .40)
(xPRNT(K LPRT (K.),

K-1 1J

l.LT.NB F WRITEO(
PIE,% 7
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APPENDIX D. PROGRAMS FOR TIME-REALIGNMENT AND AVERAGING.

The various program descriptions in Appendix D carry out details of

the time-realignment process as described in Section III 
of the report. Our

main program to do this is (arbitrarily) divided into two major subroutines,

PART1 and PART2. PART1 determines the instantaneous tracker error estimates

at the 104 times per frame for the S&H data, and PART2 is intended to make

use of those time-error estimates.

For now, PART2 only prints out the 104 per frame time corrections. The

phrase "vertical addition" has been used in the past to denote the summing

into time bins of the properly time-realigned sets of S&H data, and a sub-

routine VTADD (with entry points VTADI and VTADO) is provided to accomplish

this. If the waveform computations were all to be done here, we would modify

PART2 to incorporate VTADD, but this becomes intimately involved with specific

details of where the S&H data are stored and how to access those 
data. In-

stead, the work has been continued at Wallops Flight Center where a single

main program now incorporates the two programs PART1 and PART2 plus the

..=Ad Ad-,41c..asUTAlT1 Thisrpqpnt renrt documents PART1

and PART2 as of approximately February 1974; since then, the development and

modification work has been done at Wallops. The present Wallops programs

differ only slightly however from the material presented .in this Appendix.

The organization of the rest of Appendix D is as follows: program de-

scription, list, and flow chart for PART2; then description, list, 
and flow

for POLRG, the polynomial regression routine used by PART1; source listings

only for GDATA, MINV, MULTR, and ORDER which are needed by POLRG; a descrip-

tion, listing, and flow chart for SPLINE, the third-degree spline interpola-

tion used by PART1; description, listing, and flow chart for WEIGHT and

XCNVLV; and finally the general description, listing, and flow chart for

VTADD, together with a note on timing details. Notice that while PART1 re-

quires a subroutine FDATA to obtain the altitude data upon which 
PART1 will

operate, we supply no details of FDATA. This is because FDATA again is spe-

cifically dependant upon how the altitude data is stored or how it is avail-

able to the program. It is important to notice that the altitudes returned

by FDATA are to be in nanoseconds (i.e., the two-way ranging time).
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Subroutine Name and Argument List

Subroutine PARTi (PR)

Description

PART1 is the first of a pair of subroutines (PART2, called from PART1,

is the other) performing the individual sample-and-hold (S&H) tracker error

calculation as of February 1974. The 104 per frame tracker errors, in

nanoseconds, are printed out; the "vertical averaging" of the individual

sets of 8 S&H results has not been implemented locally (this has been

accomplished however at NASA/Wallops, and involves relatively few changes

and additions within PART2).

PART1 reads general problem parameters and then acquires altitude

data, an entire submode at a time, from FDATA. A least-squares, polynomial

regression analysis determines a set of coefficients COE which 
characterize

the fitted altitude over the submode. These coefficients COE and the 8

per frame altitude averages are used to derive average altitude 
residuals

instantaneous tracker errors which are used to set up a spline function.

PART2 then will use the spline in determining the 104 per frame tracker

errors. The weighting function is based on the work described in the "Task

A Final Report", (Contract NAS6-2307, Applied Science Associates, approx.

July 1973).

Subroutine Arguments (and Dimensions) in Calling List

PR(20) = One line of problem identification to be printed out

by a 20A4 Format.

Input/Output Performed by Subroutine

A number of problem parameters are read, and a general problem heading

is written each time through the subroutine. The principal input

to PARTI comes through the call to FDATA which provides the altitude 
data

input for the entire problem. The quantities read in directly in PART1

are listed below:
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ML " Lower limit to the degree of fit to be employed. POLRG

will perform a regression analysis for all degrees

between ML and M, starting at ML and incrementing up to

M (unless there is no improvement in the sum of 
errors

squared for a degree less than M in which case 
the

analysis stops at that point).

M Maximum degree for the least-squares polynomial regres-

sion fit to be performed by POLRG, called by PART1.

(Reading M=0 will retain the already-used values 
for

M,ML,NPLOT,NTABXY, and NTEST.)

NPLOT = Integer describing how the results of POLRG are to be

printed out, according to the rules established by POLRG:

NPLOT = 5 - Print a table of data input, fitted

value, and residuals for each separate

degree of the regression,

NPLOT = 4 - Same as NPLOT=5 but in addition call a

PLOT subroutine at each separate degree,

NPLOT = 3 - Print the table of values and residuals

only for the final degree fitted,

NPLOT = 2 - Same as NPLOT=3 but in addition call

PLOT at the final degree,

NPLOT = 1 - No table of residuals, no plot.

NTABXY = Integer determining whether to print out table of weighted

vs. unweighted tracker error estimates, 8 per frame, in

PARTIA:

NTABXY = 0 - No printout

NTABXY # 0 - Print table

NTEST = Integer setting how much of the entire problem is done:

NTEST = 2 - Go from start through POLRG only

NTEST = 1 - Go through the weighting process (which
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estimates instantaneous tracker, given

the 8 per frame average tracker errors)

NTEST = 0 - Do entire problem including determining

and printing out the 104 per frame tracker

errors (in nanoseconds).

Other Important Subroutine Variables (and Dimensions)

X(2200) X contains the one-per-frame averages of the 8 per frame

N altitudes and also contains the times corresponding to

these frame-averages. The rules for location of these

input data to POLRG are set by the requirements of GDATA

called by POLRG: FDATA puts the data for an entire sub-

mode into the required form. N is the number of such

one-frame altitude averages. Once the coefficients COE

have been determined X becomes necessary, and it is used

as temporary storage for the option NTABXY#0.

_(f1~AA FT)ATA 1,A,, rtur- v n hp per frame altitudes in array Y

Y(1600) with the corresponding times:in array T. NY is the total

NY number of such points, and will be equal to the number

of frames times 8.

COE(11I) This array contains the coefficients determined by the

least-squares polynomial regression; hence, all the

smoothed altitude history for the entire submode is

contained in COE upon return from POLRG.

Other Subroutines Called

FDATA(M,N,X,T,Y,NY) - Obtains the altitude data, an entire submode

at a time. M is necessary in the argument

list in order that FDATA stores the one-per-

frame altitude averages in X.

POLRG(N,X,ML,M,NPLOT,COE) - Performs the least-squares polynomial

regression analysis on the frame-average

altitudes and times in X, to return the

polynomial coefficients COE.
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WEIGHT(Y,NY) - Performs the weighting function necessary

to convert average tracker errors to estimate

instantaneous tracker errors. The averages

in Y are converted to instantaneous estimates

in Y upon the return from WEIGHT. (Since

the Y contents are changed in value by calling

WEIGHT, the Y values are copied over into X

before calling WEIGHT,in case a "before-and-

after" printout is desired as signalled by

SPLINE(T,Y,NY,TI,SI,O) Calling SPLINE with the last argument zero

uses T,Y,and NY as the input to set up spline-

fit coefficients within subroutine SPLINE;

subsequent calls with the last argument equal

1 will return in SI the spline result corre-

sponding to an input time TI. TI and SI are

-vuised arguments in the spline set-up step.
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288 roAT (//l (s- -OP vsIN...
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GO TrO 13
END ___________
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EN1TER 13
PARTIA

READ (1,15)RL., (End) CAL L ORG(,X,

IPLOTITAXYDKTEST 16 )~HLTCOE;

-(EU)-, RITE(3.150)

F ta

RETURNSI4-COE(tNPLSI)

NPLOT-IPLOT WRITE(3.18)I

NTEST-KTESTUN.

I I J~r-KLSI-J L

18+SI*TI

ML.,l,'PI.OT. PRO),I-1,20). 22
NTABXY,.,TEST I LPO I ~ 25

T.X* T

CALL M.IN(TT

CALLL PART2(TYNT
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Subroutine Name and Argument List

Subroutine PART2(T,Y,NY)

Description

PART2 continues from PART1 the individual 
S&H tracker error cal-

culation (104 per frame) as of Feb. 
1974. PART2 uses the spline coeffi-

cients set up in PART1; for now, the 
104 per frame tracker errors are just

printed out, but eventually the vertical 
averaging will have to be per-

formed over a frame of data. This will necessitate modifying PART2. 
(Such

modifications are being carried out at 
NASA/Wallops.)

Subroutine Arguments (and Dimensions) in the Calling List

Y(1600) = The 8 per frame instantaneous 
tracker error estimates,

are used to set up SPLINE. Y is used in the computa-

tions within SPLINE.

T(1600) 
= The times corresponding to the 

Y data.

NY = Number of elements iL Y1,T, is S f

data frames.

Input/Output Performed by Subroutine

The 104 S&H tracker error corrections 
per frame are printed out

as are the 8 per frame values of Y, 
the tracker error input data to

SPLINE. The time at the start of each frame 
is also printed out.

Other Subroutines Called

SPLINE(T,Y,NY,TI,SI,l) - With the last argument in the list

non-zero, SPLINE returns in SI the 
spline-determined tracker error

corresponding to input time TI.

Other Important Subroutine Variables (and Dimensions)

PRNT(8) 
= An array used to store 8 successive 

values of the

tracker error in order to print one 
line. There

will be 13 such lines for each frame, 
since (13 lines/

frame) times (8 values/line) equals 104 values/frame.
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N = Integer from 1 to 104 specifying which of the 104 S&H

times in a given frame is to be found. Notice that

the calculation of TI in PART2 makes specific use of

the truncation which occurs in integer division in

FORTRAN.
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ITB+-T(1)+. 976-

-- =,.. NM

I8

,J J+*(IK-1)+ 
I
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tETE(13,330)K,

TB+-TB+1.04 
T (TI),

--- 300

N-4-8* (NDS-1)+J
NDh-1412
QA+ND

I, TI-TB+.004*(3AQBQA2.)
CALL SPLI%,t(T,Y,NY,TI,SI,I)

II PRNT(J)S1

WRITE(3,340)

SnL,Nu, (PNT(1) ,
I 1-1,8)

I---------- 350



Subroutine Name and Argument List

POLRG(N,X,ML,M,NPLOT,COE)

Description

POLRG is a double-precision and modified version of the sample program

of the same name in the IBM Scientific Subroutine Package, Version III,

(IBM Form H20-0205-3). This is a least-squares polynomial regression

subroutine using other IBM Scientific Subroutine Package subroutines to

perform the analysis. Our POLRG is called from subroutine PART1 of the

Skylab tracker error program, but may be used for other general polynomial

regression applications.

Data is carried into POLRG by the array X, and a regression analysis

is performed for progressively increasing degree of polynomial (starting

from degree ML) up to a maximum degree M. Printout or plotting is control-

led by NPLOT. If there is no reduction in the residual sum of squares

between two successive degrees of the polynomials, the subroutine terminates

the problem before completing the analysis for the highest degree poly-

nomial specified. When the problem is either completed or terminated,

the polynomial coefficients are returned in array COE.

Subroutine Arguments (and Dimensions) in Calling List

X(1100),N - The input data is supplied in the double precision

array X. The number of input variable pairs is N.

The individual values of the independent variable

are stored in the first N locations of X, or in

the first column if one views X as a matrix of dimension

N by M+l. The individual values of the dependent

variable are stored in the last column of this matrix.

The dimension of X must be equal to or greater than

N*(M+1).

ML- ML is the degree of polynomial at which the problem

starts. ML must be equal to or less than M; the

problem starts at ML and increments up to M(unless

no improvement in the residual sum of squares is

reached, terminating the analysis before M is reached).
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M - The maximum degree specified for the polynomial.

NPLOT - Integer describing how the results of POLRG are to be

printed out, according to the rules established by POLRG:

NPLOT = 5 - Print a table of data input, fitted

value, and residuals for each separate

degree of the regression,

NPLOT = 4 - Same as NPLOT=5 but in addition call a

REPRODUCIBILITY OF THE PLOT subroutine at each separate degree,

ORIGINAL PAGE IS POOR
NPLOT = 3 - Print the table of values and residuals

only for the final degree fitted,

NPLOT = 2 - Same as NPLOT=3 but in addition call

PLOT at the final degree,

NPLOT = 1 - No table of residuals, no plot.

cuiw0.i) InTc ... :. ~ ~ ~ zf~i~ ~

by POLRG. If we let XI be an individual value of the

independent variable, and YI be the corresponding value

on the fitted curve, then

YI = COE(1) + COE(2)*XI + COE(3)*XI**2

+ . . . + COE(11)*XI**10.

The dimension of COE must be at least M+l.

Input/Output Performed by Subroutine

The output from POLRG is controlled by NPLOT as described above.

Other Important Subroutine Variable

DI(100),D(66), - These are various work spaces. DI,D,B,

B(10),E(10),SB(10), E,SB,T,XBAR,STD,SUMSQ, and ANS are all

T(10),XBAR(1l),STD(ll), double-precision variables. The dimen-

SUMSQ(11),ISAVE(11), sion of DI must be at least M*M. The

ANS(10) dimension of D must be at least (M+2)*(M+1)/2,

The dimensions of B,E,SB, and T must be at
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least M, and the dimensions of SBAR,STD,

SUMSQ, and ISAVE must be at least M+1.

Our POLRG is setup for a maximum M=10

and converts any higher value to 10, and

for M=10 the maximum N allowable (for

present dimension) is 100.

P(600) - P carries information for the plot of

observed data and/or printout of estimates.

The dimension of P should be at least

3*N if a plot is degired.

Other Subroutines Called

The following subroutines are all from the IBM Scientific

Subroutine Package, and are unchanged except that they

have been converted to double precision. The descrip-

tions are from the Scientific Subroutine Package

documentation and are repeated here for convenience of

reference. -

GDATA(N,M,X,XBAR,STD,D,SUMSQ) - This subroutine generates independent

variables up to the Mth power and calculates means,

standard deviations, sums of cross-products of deviations

from means, and product moment correlation coefficients.

ORDER(MM,D,MM,I,ISAVE,DI,E) - Constructs from a larger matrix of correla-

tion coefficients a subset matrix of intercorrelations

among independent variables and a vector of intercor-

relations of independent variables with dependent

variable.

MINV(DI,I,DET,B,I) - Uses standard Gauss-Jordan method to invert a matrix

and calculate the determinant.

MULTR(N,I,XBAR,STD,SUMSQ,DI,E,ISAVE,B,SB,T,ANS) - Performs a multiple

regression analysis for a dependent variable and a set

of independent variables.
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PLOT(LA,P,N,3,0,1) - A special plot subroutine can be provided for

the input data and the fitted resulting curve.

The IBM documentation provides a PLOT subroutine

but in our modified POLRG it is important to

notice that P is a double-precision array.

Most of our waveform work has been done using

a dummy PLOT routine.

Remarks

Following first the source listing and then the flow diagram for POLRG,

we provide the source listings for GDATA,ORDER,MINV, and MULTR; for any

further details of these routines, reference to the IBM documentation is

necessary.
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POLRG Flow Chart (continued)

C E

CALL ORflER(KOt.D, 150 2
V.4,1;ISAVE,D1,E)

CAL TB(.T * WRITE(3,6)AHS(l) NP3-N+4 WiRITE(7.iI.)
CALEUTRI.I. '--INTERCEPT--* *-TABLE OF

CBAL XUT,I . RESIDUALS-'
XIEARST, SB

T,AXS) 11RI(3)

(B(J),I,) NP3*IIFl3+1
'--COEFFICIENTS-- P(NP3).-COE(i) NP2-N

L -K NP3-i+N

'-RGRE~SSION WRITE(3,B)l
DECRZE--' '-DEG;REE--' I-. K-i,...,

WR ITE (3,9)I J-l,...,LA
variance table

hedig .NP2-12+1headngs if (fl'3~-POP3)NP3-NP3+1
DP IP3+(N3 RESID) P(fP2)
0 Ij*+X(L)*COE(J+l) -P(NP3)

SIEF-ANS (4) L-L+H

WRIh(310)I* L _ 0I~ 250
ZS'(4)(31,A(s(6),
ANS(10),SUNP

NI'-ANS(8) K,.

NIANS(7), I L'-L+11

WRITE(212)NT 4
SUMSQ2'N2)

P +
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SUBPOU',INE G)ATA (N,M,X, YBAP,STD,D,STMSO)

- DOUTBLF PRECISION K,XHAP,STD,D,STIMSQ,7l ,T2 ..... . ................

1? (1M-1) 105,105, 9.

90 Li-o
DO 100 1=2,M
L1 =L1 +-N
DO 1Cn 3-1,1;
L=L1+J -

K=L-N -A0 v'' IT E,* 2
-1- - % -11 -X ( K) * 1

105 MM=M+1
DF=N
L-0

-DO 115 T1,= I . .. .MM. .

... XBAP (I)=0. .. ...DO.
DO 119 J-1,Ni
L=L+1

110 XBM (T)=XBA? (I) 4X(L)
.- 14$---B- (-f 4- E: (~--P41 ) F

. DO 130 T=1,M .
130 STD(T) =f .D .

L- ( (M 1 ) * 14 )'
DO 150 i=1, L

15 0 D(I)= 0.D.
DO 17' K- 1 , ..

L= 0
vu i10 0-I,as.
L2=N* (J-1) -+K .....

-.. T2=X (L2) -XBAR (J)
a v (J) -S L , -

DO 170 I=1,3
LI=N* (I-1) +K

.- L + 1 ........

170 D (L) =D (L)+T1*T2
L-0
DO 175 J=1,MM
DO 175 I=1,3

- L-tL+I1
175 D (L) =D (L) -STD (I) *31D (J) /DF . . ......

L = 0 .... ..... .. .......... ...... ..

JIDO 18 T-i,-i
L=L+I
STJMS0 (1) =D (L)-- 0 SD(I)=DSRY(D65 (L)) )

DO 190 J=1,M " .......... - - --...........

U 19 C? L-,J

L=L+1
190 D(L) =n (L) / (SD(I) *STD(J))

D0 5 1 -> -,. (De- i.)
DO 209 I=1,Mm .........

200 STD (1) =STD (T) /!F
--.- r --u

END . ..... ..... REPRODUCIBILITYO Y THE
ORIGINAL PAGE IS POOR
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Subroutine Name and Argument List

Subroutine SPLINE (X,Y,N,TJ,SSJ,MODE)

General Background

Given a set of n points (x,y,),(x2Y2 ),--,(xn yn) arranged in ascending

order in the independent variable x, a third degree spline is a means of

interpolation to find the value of y corresponding to a specified xs for

x x < x . The program accomplishes thisby connecting each pair of
x1 <Xs - n

adjacent points with a section of a third degree polynomial. There will be

a different polynomial for each interval and these polynomials are "matched

up" at the (x,y) points by requiring that the first and second derivatives be

continuous at those points. The spline function is in some senses the "smooth-

est" interpolating function. As in all interpolating procedures, the interpo-

lating function goes through each input point, but the spline exhibits con-

siderably less oscillatory behavior between input points than does Lagrangian

interpolation, for example.

The spline function of this subroutine is derived directly from the

chapter, "Spiiue FuncLioULs, Interpolation, and Numerical Quadraure," y

T.N.E. Greville, in Mathematical Methods for Digital Computers, Vol. II,

A. Ralston and H. S. Wilf, editors, (New York: J. Wiley & Sons, 1967),

pp 156-168. Our spline differs from Greville's in trading running time for

storage space; since we were concerned about the overall size of our time-

realignment programs, we recompute each time into the routine several quanti-

ties which Greville's program stores in arrays. The index search procedure

is modified also; since our use of SPLINE will usually be for a series of

monotonically increasing independent variables, we let the index search start

at the last index found by the program.

SPLINE operates in two modes: an initial settingup with the input points

x,y; and the return of a value SSJ for an input value TJ of the independent

variable (corresponding to X). We use an indicator, MODE, in the argument

list of SPLINE to distinguish between these modes.

Subroutine Argument (and Dimension) in Calling List

X(800),Y(800) = The N input points (X,Y) for setting up SPLINE

N when called with MODE = 0. The successive values
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of X must be distinct and must be in ascending

order.

TJ,SSJ = Output of value SSJ is returned for input independent

variable value TJ, when MODE = 1.

Input/Output Performed by Subroutine

None if TJ (in MODE=1) satisfies X(1) < TJ < X(N).

If not, an error message is written indicating that

TJ was outside the allowed range.
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Subroutine Namd and Argument List

Subroutine WEIGHT (YNY)

General Description

WEIGHT is called to apply a weighting function to a set of NY input

data point. Y. Upon return from WEIGHT, the original Y will be replaced

by the set of values from applying the NW individual 
weights to the input Y.

The subroutine XCNVLV with an entry point XCFILL is used for the convolu-

tional weighting. Since generally NW will be considerably smaller than NY,

the total storage needed is only NW+NY rather thaft the 2*NY which would 
be

needed for a straightforward digital convolution.

The number of weights, NW, and the weight values, W, are set by the

DATA statement in WEIGHT. Note that with NW = 17, if W(9) is set to 1.0

and the other weights to 0., the original Y is returned from W.

Subroutine Arguments (and Dimensions) in Calling List

Y(800)'NV = Input points (number = NY) entering WEIGHT; on

return, Y is replaced by the weighted result.

Other Important Subroutine Variables

WEIGHT,NW =WEIGHT (NW) contains the weight as set by DATA

statement.

TEMP = A working temporary array. The dimensions of W

and TEMP need to be at least as large as NW.

Input/Output Performed by Subroutine

None

Other Subroutines Called

XCNVLV (with entry XCFILL) - Carries out digital convolution when

called repeatedly with successive points. XCNVLV

listing only is provided here.
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SUPPOUTTNE WIGIT (Y,NY) - .- ---

DOUBLE P.CIISTON Y,Y!,W,TFMP,YOUT

DPTA NW/17/,W/-.OOlDO,-.en5SD0,-.O1"5f.,-.O3DO,-.0u85D',-.057DO,

2 ".03D0, - . 0 1 4 5 o ,- " 0 0 5 5 00 -  0 0 1I D /  - -.. .

-IF (NY.GE.NW) GO T) 5 . ..

3 FOPMATT(//' NO WE!GHTTING DONE, BECAUSE NY=, 13,',BUT NW= ',I3//)

RETUPN

JY*=1
-- WW M= N W-

DO 10 I= 1, NW ... . ...

Y I.= Y ()..............

DO 20 I=NW,NY
YT=Y (T)
UAlL X Nk-V Vi LV, iLIeJt XI I,

i e i, )

.JJ=I-NWH 
-------

20 Y (JJ)= YOUT
bb iU!
END

.. .DIMENSIO 
- TEIP(Ni) ,!H (NH)

. .DOUBLE PRC!S!ON TEMP,H,YIT x
I.L % . L;

JP=NH+1
NP=MO (JXY-1, NF)
It (b:-.G L. .- ) ..- ,- 20

TEMP(NH) =XT.

-. DO 100 1=1 ,TH........

100 YI=YI+TEMP (I)*!I ()
PETUDI

U0 16 ' o r -Al
. V -p ... .. ......---- -. --.........

. K= N-NP T =1,P. D DO 210 1 ,K .

M=JP-:
210 YI=YT+'mP (J) *f: ( )

. Do 220 I=1I,NP

U- ii -

.J= T+ K
M-J1P-

220 YI=Y I+TE %lP (1) *fl V)
RETUJ?N

ST Ti.! T, , 7 _- 11,H, 1H)

........... IF (NP.GT.r) GO T3 300 ....... . .

RE TU j !
300 TEMP(VNI) =XT

... ZG I -. ".. . . )



NY.G.NW0--N WEGHIN--'JP+NH+1

T N?.HOD(JXY-1,NH)

RETURNNP.Gr.o

1+ ...NP.1

I-i - 11,.

CALXML(l1 P+-JP-t J.-t+K

I Y14Y1+TEH1P(I) H(M4)I

---- 20

RETU RTR

CALL XCN%"LV(Y0UT,YIg,

TE I'NP)X
:~N H-NP NR

NP4MOD (JXY-1 .KiH)
IFT J-1+NP

!4'JP-I 14P.GT.0 T

Y14Y1+TE'4P ()

- - - 2 'rENP(II) X,

60

TINPX
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Subroutine Name and Argument List

Subroutine VTADI(MB,EPS,SANDH,SUM1,SUM2,NSUM)

Entry VTADD(EPS,SANDH)

Entry VTADO(SUMI,SUM2,NSUM)

Description

This subroutine accomplishes the "vertical averaging" of a number

of sets of sample-and-hold results once each individual sample-and-hold

time tracker error correction EPS has been found. VTADI initializes

the storage locations and sets up several interval variables, VTADD

is used to enter each successive sample-and-hold set SANDH in bins

appropriate to the individual tracker error EPS, and VTADO gets ready

for outputting the means, standard deviations, and total number of

entries at each storage bin.

Subroutine Ariguments (and Dimensions) in Calling List

The individual bin width is GS/MB (where GS is the S&H

gate separation, 10 nanoseconds in the case of SKYLAB

S-193). 1<MB-10

EPS = Individual tracker error in nanoseconds at time

corresponding to the input SANDH.

SANDI1(8) = Input set of 8 sample-and-hold gate readings.

SUM1(151) = The set of double-precision bins into which the differ-

ent inputs are summed; the call to VTADI zeroes all

these and the call to VTADO converts all the subtotals

to individual bin means.

SUM2(151) = A set of double-precision bins into which the squares

of SANDH are added. VTADI zeroes all SUM2, and the

call to VTADO converts the sum of squares into individual

bin standard deviation estimates.

NSUM(151) = An integer array accompanying SUMI and SUM2 which

records the number of entries to each individual bin.

The call to VTADI zeroes all NSUM.
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Other Important Subroutine Variables

GS = Sample-and-hold gate separation in nanoseconzi %Yo-.v.v Lw

S-193 Mode 5, submodes 1 and 2, and GS=25.0 for the other

submodes of Modes 1 and 5).

NBB = An integer locating the base bin, calculated from WB in

VTADI. All 8 S&H locations are calculated relative to.NBB

via JB in VTADD.

Input/Output Performed by Subroutine

None except through calling list.

Other Subroutines Called

None.
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SUBROUTINE VTADI(MBEPSSAND:-,SUMISUh2,JSUM)
DIMENSI CN SAN:JDH(8),SUM 1(151), SUM2(151),NSUW(1
DOUBLE PRECISION SUMlISUM2,SHI,DSG,XMN
DATA GS/10./
IF (MB.GT.10) MB=10
NBB=4*MB+1
VB=G S/M B
DO 10 I=1,151
SUM1I(I)=0.DO
SUM2C I )= 0.DO

10 NSUMCI)=0
RETURN
ENTRY VTADDCEPS, SANDH)
Q=EPS/Ti-.5
IF (EPS.GE.0.) Q=Q+1.
JB=NBB+INT(Q)
IF (JB.LT.1) JE=I
IF CJB.GT.81) JB=81
DO 20 I=1,8
SHI=SANDliH( I)
SUMI{JB)=5UMI(jB)+SHISUM2l(JB)=SU4M21(JB)+SHI*SHI

NSUM(JB)=)JSUM (JB)+1 I
20 JB=JB+MB

RETURN
ENTRY VTADOC( SUM I,SUM2,NSUM)
DO 30 I=1,151
XNS=,'J.SUM ( I)
IF (XNS.LT. I.) GO TO 30
XMN=SUMl(I)/XNS
SUMl(I)=XMN
IF (XNS.GT.l.) GO TO 40
SG=16.*SUM2(I)
GO TO 35

40 DSG=SUM2(I)-XNS*XMN*XMM
SG=DSG/(XNJS- 1.)

35 SUM2(1)=SQRT(ABS(SG))
30 CCNTINUE

RETURN
END
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ENTRY D
~D

4-EPSIW-.5 
MB T1 B1

F

I U2JB*SUB+I12(B)S1*

JB.L-BT+MB-

VrF D SG'T.SX
2 I S .GT.1)f-

JB.G-8lJBSBl SUi(I)+S**X

F -- ~~~** ,51SG4DSG(XN4.

I 30

IHI -AD (I)2I)S 
R (A SS )

I -J)4S IJ( B + H
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Time and Position Details for Bins in VTADD

Thle accompanying sketch shows the bin numbering and positioning

details. Notice that this is specific to eight sample-and-hold gates

as in the Skylab S-193 experiment (although the changes necessary 
to

go to a different number of S&H gates would be simple 
ones), and that

an additional four gate positions are located on either side of the

original eight to allow for tracker jitter of up to . 4 GS.

The total number of "vertical averaging" bins is (15*MB)+l, and

VTADD allows for MB:10, so that the maximum number of bins, at 
MB=10,

is 151.

If one uses JSO as an index to denote the original S&H gate numbers

(JSO=1,...,8), and JMB as the index to denote the bin number corresponding

to JSO for a specified MB, the relation between JSO and JMB is

JMB=(JSO+3)*MB+l

Also, relative to a local time origin t=O located at the position 
of the

first of the original gate positions, the time at the center of any

specified bin JMB is given by

time=(JMB-4*MB-l)*GS/MB



Added 4 positions . u . . .--- v Added 4 positions
to allow for to allow for
tracker jitter tracker jitter

f S&H
S positions

I GSK 

/4 bin #I l I I l 1 Il l I It l l I I '
__ _ _ l I IB o=1

-4WB = GS/L.

I I I 1 11 I 2 ' bin #s fort____,i I,__II__"I , I , 1 :, !_I 1 1 _ MB=2
WB =GS/2

a 16 ,01, .11 a 28 3 6 40 <bin #[ 'IBins for

S i I - - WB = GS/4.

location

Sketch of Time and Position Relations anriong VTADD Bins 4


